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Abstract 
 

Near-infrared and Raman spectroscopy are complimentary techniques with 
considerable potential for on-line process analysis.  Near-IR, in fact, has already gained wide 
acceptance for the analysis of commodity chemicals and other products that can justify the 
often considerable cost of near-IR calibrations. Raman spectroscopy offers the potential of 
much simpler calibrations.  However, its application to process analysis has been held back 
to some extent by the less mature nature of the instrumentation.  This situation is now 
starting to change as both the instruments and sampling equipment become more hardened.  
As a result, Raman is becoming a viable alternative to Near-IR for many dedicated 
applications. The present paper evaluates the potential of both near-IR and Raman for 
potential process applications involving a variety of sample types.  Experimental data is 
provided which compares the utility of each technique for samples ranging from granular 
solids to heterogeneous mixtures.  

 
1. INTRODUCTION: 
 
 Both near infrared and Raman spectroscopy are finding steadily increasing application to 
a wide range of industrial applications.  The general characteristics of these two analytical 
techniques are fairly well known.  As a result, the choice of which technique to apply can 
sometimes be made on a routine basis once the general nature of the sample system is known.   
However, in many other cases, the choice is not at all obvious and a more thorough analysis 
may be needed.  The object of this paper is to address some of these cases and to provide 
guidelines that may help simplify the process.   
 
 Near-infrared and Raman are two of the three common forms of molecular spectroscopy, 
the third being mid-infrared.  The characteristics of all three are summarized in a simplified form 
in Table I.  Simplifying further, we can state that the major attractiveness of NIR resides in the 
availability of fiber-optics for near-IR signal transmission.  Mid-IR, on the other hand 
encompasses the fundamental vibrational bands of all organic molecules.  As a result, mid-IR 
calibrations tend to be simple and robust.  The problem with Near-IR is not , as is often stated,  
that the overtone and combination tone bands are broad.  It is rather a result of the overlap of 
the various of orders of the overtones.  Only vibrations involving very light atoms (eg. CH and 
OH) have first overtones in the near-IR region.  And these usually swamp the much weaker  
second, third, and fourth overtones of the fingerprint spectra falling in the same spectral region. 
Thus near-IR calibrations tend to be quite tedious and often require continuous maintenance.  
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TABLE I:  MOLECULAR SPECTROSCOPY CHARACTERISTICS 
 

 Mid-IR Near-IR Raman 
Bands Fundamentals Overtones of CH Fundamentals 

Calibrations Simple Tedious Simple 
Sampling Method ATR Transmission Backscatter 

Optics Sensitive Resilient Resilient 
Fiber-optics Not practical OK OK 

Fluorescence OK OK Can be a problem 
Referencing OK OK Can be a problem 

Hardware Maturity Moderate Good Early Stage 
 
 Raman spectroscopy, while at a somewhat earlier stage of hardware maturity, combines 
the convenience of practical fiber-optic signal transmission with the specificity of fundamental 
bands.  It thus shares the attractive features of both mid-IR and near-IR.  It does, however,  
have some weaknesses.  These will be discussed in some detail below. 
 
 Table II summarizes the applicability of near-IR and Raman spectroscopy to samples in 
various physical forms.  Here we have made a distinction between near-IR transmission and 
diffuse reflectance.  Near-IR transmission has two very desirable characteristics.  First,  
adherence to Beer’s law makes transmission  data relatively manageable.  Second it is a well 
established and generally very reliable method with mature hardware and relatively low cost of 
ownership.   As a result, Near-IR transmission will generally be the method of choice for the 
analysis of clear fluids.  I thus will devote the bulk of this paper to sample system to which near-
IR transmission does not apply.  These include granular and bulk solids and heterogeneous 
mixtures.   The issues in these cases include data linearization and normalization, uncertainties 
due to sample form, the effects of a fluid matrix, the dependence of the measurement on viewed 
area, and the information content of the data.  
 
 
TABLE II:  APPLICABILITY OF FIBER-OPTIC COUPLED ANALYTICAL TECHNIQUES 
 

Sample Type NIR Transmission Diffuse Reflectance Raman 
Clear Fluids Yes No Yes 

Scattering Fluids Some Cases Some Cases Yes 
Granular Solids No Yes Yes 

Bulk Solids, 
Scattering 

No Yes Yes 

Bulk Solids, Clear Some Cases No Yes 
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THE NATURE OF THE SPECTRA: 
 
 The adherence of transmission spectral data to Beer’s law has two important 
consequences.  First the data can be converted to a form which is linear in concentration by 
simply taking the negative log. Once linearized, it can be analyzed by means of the various 
multivariate (chemometric) data reduction programs available. Second, the log function converts 
multiplitive errors into additive errors, which can easily be ignored.  This is important since 
measurement artifacts – such as those resulting from source fluctuations or degradation of 
instrument or sampling optics – will typically be multiplitive.  
 
 Neither Raman nor diffuse reflectance spectra follow Beer’s law.  In the case of Raman, 
the raw spectra of homogeneous samples are linear in concentration.  This, at first, may appear 
to be advantageous.  However, it does present a problem in that multiplitive errors can mimic 
concentration changes.  The only safe way to mitigate this problem is to use the internal 
characteristics of the data itself to normalize the measurements. In the case of a chemical 
reaction in which some molecular bonds are not effected by the reaction, a varying band can be 
normalized by dividing it by a constant band. Below, I will describe another approach to 
normalization, which is applicable to mixtures of non-reacting substances. 
 
 Although diffuse reflectance spectra do not fellow Beer’s law, they can often be linearized 
by using the Kubelka-Munk function: 
 

F(R∝ ) = (1-R)2/2R,    
 
where “R” is the measured reflectance.  The utility of the Kubelka-Munk function resides in the 
fact that it is proportional to concentration in certain idealized cases, most notably situations in 
which the scattering characteristics of all of the samples are the same (Ref. 1).  In such cases, 
the linearized data can then be subjected to chemometric analysis. However, caution should be 
exercised in applying the Kubelka-Munk function since multiplitive errors in measured 
reflectance do not translate into additive errors and hence can not be ignored.  This is 
analogous to the multiplitive error problem in Raman spectroscopy.  And, as in the Raman case, 
it necessitates appropriate normalization.  
 
 So far, I have noted two similarities between near-IR and Raman analysis.  In both cases, 
the data are generally amenable to chemometric analysis as long as the materials being 
analyzed are homogeneous. And both require some form of normalization to remove 
uncertainties caused by multiplitive errors.  As we will see below, the similarities go even further.  
In both cases, the data can be very highly non-linear in concentration if the samples are 
inhomogeneous – i.e. if they involve mixtures of substances having different scattering 
characteristics.  As is illustrated in reference 1, diffuse reflectance spectra depend on both the 
absorption and scattering characteristics of each substance present.  If the scattering 
characteristics of the various components are substantially different, the dependence on 
concentration will be highly nonlinear, albeit in a predictable way.  As I will illustrate below, 
similar considerations apply to Raman spectra; although the functionality of the scattering 
dependence will be substantially different.  
 
 There are a number of obvious ways in which near-IR and Raman spectra differ. These 
can have bearing on the relative utility of the two techniques for particular measurements.  The 
more important of these are listed below: 



 4 

 
Near-IR Diffuse Reflectance Limitations: 
 
 The functionalities of diffuse reflectance spectra on concentration are only easily 
predictable when the various assumptions underlying the Kubelka-Munk theory apply.  In 
particular, diffuse reflectance spectra can be distorted by such factors as: 
 

- specular reflectance 
- limited sample illumination and viewed area 
- limited thickness 
- particle size 
- refractive index variations 
- inhomogeneity 

 
Raman Limitations: 
 
 Raman spectra may be obscured or degraded if any of the follow are present: 
 

- sample fluorescence 
- pigmentation at either the laser or Raman shift frequencies 
- background illumination 
- high temperatures 
- unpredictable or frequency dependent diffuse scattering 

 
 
NIR AND RAMAN ANALYSIS OF HOMOGENEOUS SAMPLES: 
 
 The choice of analytical technique is simplified if the analyte is either a clear liquid or 
solid or a uniform powder.  In these cases, there are still a number of factors that need to be 
considered.  But these are generally well understood and can be clearly weighed in determining 
the approach most likely to succeed.   
 
 Raman will typically be preferred if the samples are transparent bulk solids.  Near-IR 
transmission can also be applied in some cases, but it requires that the surfaces be flat and 
parallel and that the sample be limited in thickness and of uniformly good optical quality.  The 
use of Raman may be dictated if the analyte lacks a near IR spectrum (e.g. many inorganics) or 
if the near-IR spectrum has insufficient specificity for the required analysis. This will often be the 
case if the physical or chemical properties of interest have very subtle spectral effects. Finally, 
Raman may be preferred if the process cannot justify the cost of the Near-IR calibration 
required.  This will often be the case if a given process system is used for a number of different 
short production runs or in process development applications where it is necessary to screen a 
large number of reactions or materials.   
 
 Near-IR transmission will often be preferred for clear liquids due to the maturity and 
reliability of the hardware and the fact that adherence to Beer’s law greatly aids data treatment.  
Of course, Raman may still be preferred for rapid screening and other applications requiring 
simple calibrations, as noted above.  
 
 Near-IR diffuse reflectance will generally be preferred for scattering solids for which 
Raman is problematic due to such factors as fluorescence, pigmentation, or background 
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radiation. It may also be preferred in cases where a very large sampling area is needed due to 
sample inhomogeneity. In many other applications involving particulate matter, it may be 
necessary to experimentally evaluate both approaches before making a decision. This is 
particularly true of inhomogeneous mixtures, i.e. mixtures of substances having different 
scattering characteristics.  Several examples are examined below.  
 
 
SPECIFIC COMPARISONS OF NEAR-IR AND RAMAN ANALYSIS:  
 
Effects of physical form and limited sampling area: 
 
 Many applications require monitoring of particulate material – such as polymer pellets – 
which may be traveling through a pipe or on a conveyor belt.  Analyses of this type have been 
successfully carried out over the years by using near-IR diffuse reflectance.   In most cases it 
has been necessary to use an illumination area which is large compared to the particle size.  
While the exact requirement depends on required accuracy of the measurement, a rule of thumb 
that is often applied is that the diameter of the illuminated and viewed area should be at least a 
hundred times the typical particle diameter.  This approach works best when the analyzer can 
be located adjacent to the process and coupled to it either by one or more large diameter fiber 
bundle or by discrete optical elements.   However, for most process measurements, it is highly 
desirable to locate the instrument in a controlled environment remote from the process.  In such 
cases there will be a critical trade-off between illuminated area and received signal level (Ref. 
2).  
 
 To illustrate the trade-off between sampling area and measurement repeatability, we 
acquired multiple spectra of polyethylene granules with various particle sizes and illuminated 
areas.  To do this we used a prototype diffuse reflectance probe coupled to the near-IR 
spectrometer by means of a 2.5 mm diameter bifurcated fiber-optic bundle.  The particular probe 
design used allows the spot diameter to be varied between 2.5 mm and 32 mm.   
 
 Figures 1 is a set of overlaid spectra corresponding to five different areas of 0.5 to 1 mm 
diameter granules viewed with 32 mm diameter illumination.  Figure 2 represents the same sort 
of measurements except with 3 to 4 mm diameter granules and a 10 mm diameter illuminated 
area.  The differences both in the gross characteristics of the spectra and in their repeatability 
are dramatic.  First, the absorption bands seen in Figure 2 are much stronger than those in 
Figure 1.  This is due to the reduced scattering and hence greater penetration depth that occurs 
with the larger particles.  Second the signal level in spectral regions of low absorption is 
substantially reduced due to the fact that some of the radiation is scattered out of the field of 
view of the receiving optics.  The magnitude of this effect varies significantly with different 
viewing areas.  Third, in the region very strong absorption, we see a baseline off-set due to 
specular reflectance. This also varies with view area.   
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Figure 1:  Diffuse reflectance spectra of five different areas of granular polyethylene obtained with a 32 mm 
spot size. 
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Figure 2: Spectra of five areas of a sample of 3 to 4 mm diameter polyethylene pellets obtained with a 10 
mm spot diameter. 
 
 The uncertainty caused by limited viewing area relative to particle size can be reduced to 
some extent by applying a multiplitive correction to the raw data to partially correct for the lost 
signal and a subtractive correction to account for specular reflectance.  Figures 3 consists of  
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overlaid second derivative, Kubelka-Munk transformed spectra corresponding to two of the 
spectra of Figure 2 after applying these corrections.  Although the multiplitive and subtractive 
corrections do reduce the scatter between the spectra, the variations are still too great to be 
acceptable for many analyses.   
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Figure 3: Second derivative, Kubelka-Munk spectra corresponding to two of the spectra of Figure 2 after 
performing multiplitive and additive corrections.  
 

Figure 4 includes seven Raman spectra of a single 3 – 4 mm diameter polyethylene 
pellet viewed in seven random orientations.  In this case, the viewed area (0.3 mm in diameter) 
was considerably smaller than the pellet. Once again, we see a substantial variation in overall 
signal level – probably due to variations in specular reflection and scattering losses and 
penetration depth. However, these variations do not alter the relative band heights or shapes.  
This can be seen by scaling the spectra to match at a given frequency and then taking the 
second derivative.  The result is given in Figure 5.  As can be seen, all of the spectra match very 
well with the exception of some spurious features in one spectrum – probably due to a small 
area of contamination.   
 
 Comparing Figures 3 and 5, we find that Raman spectroscopy has yielded a much more 
repeatable result without requiring the signal level to be sacrifice by spreading the beam and 
without introducing the uncertainties in band shape caused by the corrections used in the diffuse 
reflectance case.  In general, we can state that grain size and related form factors are much 
more of a problem for diffuse reflectance than for Raman spectroscopy.   
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Figure 4: Raman spectra of a 3-4 mm diameter polyethylene pellet in seven random orientations. 
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Figure 5:  Scaled second derivative spectra corresponding to the seven spectra of Figure 4.  
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Analysis of particulate matter in a liquid matrix:  
 
 One particular measurement task that was brought to us by a customer involved 
measuring the concentration of polymer particles being transported in a water slurry.  We 
simulated this task by using the same 3 to 4 mm diameter polyethylene pellets used above. We 
first filled a glass beaker with the pellets and obtained a diffuse reflectance spectrum through 
the beaker wall.  The result is shown as the upper trace in Figure 6.  We next poured enough 
water into the beaker to just fill the space between the pellets without reducing the density of the 
pellets (lower trace). 
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Figure 6: Diffuse reflectance spectra of 3-4 mm polyethylene beads through a beaker wall.  Upper trace: 
dry;  Lower trace: in a water matrix. 
 
 As Figure 6 illustrates, the diffuse reflectance spectrum of polyethylene almost 
disappears when the space between the pellets is filled with water.  This is largely due to the 
fact that the diffuse reflectance, in this case, results from multiple specular reflections at the 
surface of the pellets. The refractive index of the water partially matches that to the pellets, 
greatly reducing the reflectance and allowing the light to penetrate further into the sample --
where it is eventually absorbed by the water or scattered out of the probe field of view.  The 
residual background is largely due to reflection by the beaker.  
 
 Figure 7 includes time averaged Raman spectra of vigorously stirred mixtures of water 
and polyethylene pellets obtained with an RFP-480 process Raman probe immersed in the 
vessel. The concentrations ranged from zero to 11.3 %.  To obtain a calibration for this data, we 
first took second derivatives of all of the spectra to minimize the effects of the fluorescence 
background and then used PCR.  The result is shown in Figure 8.   
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Figure 7: Raman spectra of polyethylene pellets in water at concentrations from zero to 11.3%.  
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Figure 8:  PCR calibration for polyethylene concentration in a water slurry. 
 
 As the two experiments above illustrate, Raman spectroscopy is a far better means for 
monitoring concentrations of polymers in water than near-IR diffuse reflectance.  The power of 
Raman for this analysis is a result of two factors.  First, water is a weak Raman scatterer, 
although it does have a band in the 1600 cm-1 region that can be used for normalization.  
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Second the fact that the Raman signal is linear in concentration makes it possible to co-add 
rapidly varying raw signals on the fly.  In this experiment, the signal level for individual scans 
actually varied between zero and 100% as individual particles passed through the probe’s field 
of view. 
 
Diluent effects: 
 
 As I have shown in an earlier paper, the Kubelka-Munk function will have a non-linear 
dependence on concentration if the sample system is a mixture of substances having different 
scattering coefficients (Ref. 1).  For the simple case of an absorbing scatterer mixed with a non-
absorbing diluant, the concentration dependence is given by the equation: 
 
   F(R) = aC/[(b-1)C + 1]     where   a = k1/s2  and  b =s1/s2. 
 
Here k1 is the absorptivity and s1 and s2 are the scattering coefficients of the absorbing and non-
absorbing species, respectively.   
 
 As a test of the predicted concentration dependence we acquired spectra of various 
absorbing powders diluted, in turn, by strongly scattering and weakly scattering diluents. A 
typical example is given in Figure 9 for niacin (a strong scatterer) diluted by KCl (a weak 
scatterer).  This is a plot of the second derivative peak value of the band centered at 6028 cm-1 
as a function of niacin concentration.  The solid line is a fit of the equation given above to the 
data, using the values a = 1.65 and b = 5.6.  After further experimentation, we concluded that 
the scatter in data is due to variations in packing density.  
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Figure 9: Theoretical fit to niacin/KCl Kubelka-Munk peak values. 
 

We can draw two conclusions from Figure 9.  First, it is possible to develop calibrations 
for non-linear diffuse reflectance data by fitting Kubelka-Munk intensities at specific frequencies 
to the appropriate theoretical curves.  Second, for certain sets of conditions, the curve of 
Kubelka-Munk peak values versus concentration can be almost flat.  In view of this fact, 
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combined with the unavoidable scatter in the data, it would be very difficult to use Kubelka-Munk 
measurements of predict concentration values under such conditions.  

 
As a comparison, we obtained a set of Raman spectra for a similar set of niacin/KCl 

dilutions.  The result is given in Figure 10.  Once again, we have a non-linear dependence of the 
measured peak values on concentration.  However, in this case, the inflection is in the opposite 
direction than the diffuse reflectance data and there appears to be less scatter.  No fit is 
provided since we have not yet developed a theoretical prediction for the functionality.  Never 
the less, with the aid of an appropriate normalization, data such as this could be used for 
calibration by performing a piecewise linearization or by developing an empirical non-linear fit.  
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Figure 10:  Raman peak height data for mixtures of niacin and KCl. 
 

The difference in the functionality exhibited by Figures 9 and 10 can be understood as 
follows.  In the case of diffuse reflectance,  an increase in the scattering coefficient (as occurs 
with increased niacin concentration) leads to a reduction in penetration depth and hence in the 
interaction of the radiation with the sample. This, in turn, results in a reduction of the slope of the 
peak height vs. concentration curve.  In the extreme case of s1 >> s2, F(R) becomes a constant 
and we have no information about concentration. The Raman case is different in that Raman 
scattering is an extremely rare event.  As a result, any reduction in the intensity of the laser 
radiation due to Raman scattering is negligible.  As long as the sample is transparent at the 
laser frequency, an increase in the scattering coefficient will result in a given photon 
experiencing more reflections and hence spending more time interacting with the sample before 
being scattered out of the probe’s field of view. This results in an increase in the slope of the 
Raman signal vs. concentration plot with increased niacin concentration.  

 
From the practicality viewpoint, a comparison of Figures 9 and 10 suggests that, for this 

particular example (a strongly scattering absorber diluted by a weak scatterer), Raman 
spectroscopy will provide generally more consistent data.  However, for low concentrations, 
diffuse reflectance may have and advantage due to a stronger dependence on concentration in 
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this region. We should note, of course, that there is no practical way to internally normalize the 
Raman data when one of the constituents is inactive.  In the case of diffuse reflectance, the 
need for normalization is mitigated by fitting the data to a theoretical nonlinear function.  
 
Mixtures of particulate matter and active liquids: 
 
 Many current and potential applications of both Raman and near-IR spectroscopy involve 
slurries in which the properties of the liquid phase are to be monitored.  In such cases, the solid 
phase may or may not be active.  We will look at two examples, both employing TiO2 as a 
convenient strong scatterer.  
 
 In the near-IR analysis of slurries involving an inorganic solid phase, most of the spectral 
features will be due to the organic liquid phase.  The solid phase serves primarily as a scatterer.  
As shown in Reference 1, the predicted dependence of the Kubelka-Munk function on 
concentration in this case is 
 
   F(R) = (k/s)Ck/(1-Ck)     Eq. 2 
 
Or    F(R) = (k/s)/(1-Cs)/ Cs     Eq. 3 
 
Where   k is the absorptivity of the clear liquid phase 
   s is the scattering coefficient of the inactive solid phase 
   Ck is the concentration of the liquid phase, and  
   Cs is the concentration of the solid phase. 
 
 As an illustration of the behavior of this type of slurry in the near-IR, we studied stirred 
mixtures of TiO2, water, and methanol.  We first acquired diffuse reflectance spectra of mixtures 
of water and TiO2 as a function of TiO2 concentration.  The experimental points in Figure 11 are 
measurements of the Kubelka-Munk peak heights of a water band as a function of TiO2

 

concentration.   The theoretical curve is a fit of Equation 3 to this data.   
 
 To test the potential for analyzing mixtures of organics in the presence of a scattering 
inorganic, we studied mixtures of water and methanol with the TiO2

 concentration maintained at 
1%.  Representative spectra are given in Figure 12, and the result of a PLS calibration is given 
in Figure 13.   
 
 It should be noted that any variation in the concentration of the scatterer will result in an 
error in the measurement of the active substances unless either the concentration of the 
scatterer is included in the calibration or an appropriate normalization is performed.  Since the 
dependence on scatterer concentration is highly nonlinear, it would be difficult to obtain a 
calibration by using any of the linear regression methods.  However, as I will illustrate below, it is 
possible to circumvent this problem by using an appropriate method of normalization.   
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Figure 11:  Plots of the measured and theoretical Kubelka-Munk values of the water band at 6906 cm-1 as a 
function of TiO2 concentration. 
 

 

Figure 12: Kubelka-Munk transformed spectra of four mixtures of methanol and water with a fixed 
concentration of 1% TiO2 powder. 
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Figure 13: PLS analysis of of mixtures of methanol and water in the presence of 1% TiO2. 
 

 A major difference between the application of Raman spectroscopy and near-IR 
spectroscopy to mixtures of organic liquids and inorganic solids results from the fact that the 
inorganics will often have very strong Raman spectra. To examine this and the other factors 
relating to the Raman analysis of slurries, we studied stirred mixtures of TiO2 and isopropanol. A 
comparison of the spectra of the two pure substances is given in Figures 14 and 15.    We see 
that, although Isopropanol is a fairly strong Raman scatterer for an organic, the main TiO2 peaks 
are almost two orders of magnitude stronger.  Despite the disparity in the strengths of the 
bands, it is possible to develop a calibration for concentrations of mixtures of these two 
substances.  To do this, we first took the second derivative of each spectrum.  This greatly 
reduced the overlap between the spectra by discriminating against the broad features.  We next 
recorded the signal values at the frequencies corresponding to the strongest peaks of the two 
substances as a function of concentration.  The results are given in Figures 16 and 17. 
 
 Examining Figure 16 first, we see that the intensity at the frequency corresponding to the 
peak of the TiO2 spectrum increases monotonically with TiO2 concentration.  The situation is 
substantially different, however, at the frequency corresponding to the isopropanol peak.  In the 
absence of TiO2 we see the very strong peak corresponding to pure isopropanol.  With the 
addition of TiO2 at a concentration of only 0.2%, the intensity drops more than an order of 
magnitude. With the addition of a few percent TiO2, the intensity of this band increases by a 
factor of five or so.  Above this it appears to have little concentration dependence.   
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Figure 14: Raman spectra of TiO2 (upper trace) and isopropanol (lower trace). 
 

 
 
Figure 15: The spectral of Figure 14 expanded approximately sixty times. 
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Figure 16: Second derivative peak height values of the TiO2 band at 632 cm-1 for mixtures of TiO2 and 
isopropanol. 

Figure 17:  Second derivative peak height values of the isopropanol band at 811 cm-1 for mixtures of TiO2 
and isopropanol. 
 
 The strange behavior of the isopropanol peak height is a result of the interaction of the 
various factors that determine the level of received Raman scattering.  It can be understood at 
least qualitatively by the following simplistic analysis.  First, the total Raman signal generated is 
determined by the number of interactions that take place between the laser beam and 
isopropanol molecules within the field of view of the receiving optics.  Second, this signal can be 
reduced by diffuse scattering – of both the laser beam and the Raman signal – to the extent that  
light is scattered out of the probe’s field of view. Third, under certain conditions the signal can 
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increase if scattering results in a given photon traveling a greater distance before leaving the 
field of view.    
 

The large signal obtained in the absence of scatterers, is partly the result of the 
substantial depth of field of the Raman probe (> 1 mm). The addition of even a very small 
amount of TiO2 greatly reduces the penetration of the laser beam into the sample and at the 
same time scatters a portion of both the laser radiation and the Raman signal out of the field of 
view of the receiving optics. This results in the observed large drop in signal.  With a further 
increase in TiO2 concentration, the diffusion distance for scattered light decreases to less than 
the field of view of the probe (0.3 mm).  In this domain, a given laser photon may experience 
several reflections before being scattered out of the field of view. This results in an increase in 
the number of potential observable interactions between the photon and isopropanol molecules 
and hence in the Raman signal. At still higher concentrations of TiO2 the decrease in the actual 
concentration of isopropanol tends to offset further increases due to increased photon residence 
time within the field of view, and the signal levels out.   
 
Calibrating heterogeneous mixtures: 
 
 The two examples given in the previous section illustrate the fact that, for both diffuse 
reflectance and Raman spectroscopy of heterogeneous mixtures, the relationship between 
concentration and spectral intensities can be highly nonlinear, and possibly even non-
monotonic.  This makes it very difficult to apply multivariate techniques involving linear 
regression, unless the analysis is restricted to a narrow range of concentrations (Ref. 3).  A 
second issue for both of these forms of spectroscopy is that, since they do not obey Beer’s law, 
they require some sort of normalization to remove overall signal level uncertainty.  I will address 
both of these issues here for the simple case of band strength analysis.  
 
 In this section, I will give some examples which illustrate the fact that, in many cases,  
both non-linearity and signal level uncertainty can be handled by appropriate normalization.  
Let’s first consider Raman analysis.  In the case of simple chemical reactions in which some 
features of the spectrum are unaffected by the reaction, the normalization problem is typically 
solved by ratioing a changing reaction dependent band against a constant band, i.e. 
 
   C1 = k1S1/S2         Eq. 4 
    
where S1 and S2 are the heights of the changing and fixed bands and k1 is a calibration 
coefficient.  
 
 In a blending application, there are no constant bands.  Furthermore, as we’ve seen 
above, the band strengths can be strongly affected by differences in the diffuse scattering 
characteristics of the components.  However, we do have two very useful pieces of information 
at our disposal.  First, we know that the sum of all component concentrations is equal to one.  
Secondly, we know that the Raman signal of each chemical species is affected in the same way 
by diffuse scattering.  In developing the equations given below, I have used these facts as well 
as the simplifying assumption that the diffuse scattering effect is the same for each of the bands 
being employed, i.e. that it is independent of frequency across the range of the Raman shifts of 
interest.   
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 Requiring that the sum of all components is equal to one is an example of “normalization 
by closure” (Ref. 4).   In principle, it should be possible to employ this normalization for any 
number of components by simply requiring: 
 

   ΣiCi = 1.       Eq. 5 
 
For the case of two component blending, this requirement reduces to 
 
     Ci = [kjjSi – kijSj]/[(kii - kij)Sj + (kjj – kji)Si]   Eq. 6 
 
where i and j can each take on the values  1 and 2, S1 and S2 are measured band strengths,   
C1 and C2 are the concentrations, and the k’s are calibration constants.   
 
 By imposing the closure requirement, we have developed expressions for the 
concentration values which are independent of factors – such as concentration dependent 
diffuse scattering – which can distort the raw data.  For each measured spectrum, we will have 
two equations of this form, one for each component.  Thus, given the measurement of two or 
more spectra corresponding to known concentrations, we can solve for the four “k” values and 
develop a calibration which is valid for any spectrum of an unknown mixture of these species. 
As an initial test of this approach, I applied it to the TiO2/isoproponal data reported in the 
previous section. The results are given in Figure 18. 
 

 
Figure 18:  TiO2 and isopropanol concentration calibration derived from the data of Figures 16 and 17 by 
requiring that the sum of the components is equal to 100%. 
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Aside from two pairs of outliers corresponding to very low concentrations of TiO2, this approach 
has produced a linear plot of measured versus predicted concentration.  The normalized data 
also appears to have less scatter than the raw data. 
 
 As a final example, we studied mixtures of niacin (a strong scatterer) and ascorbic acid (a 
weak scatterer) by both Raman and diffuse reflectance. A linear fit to the Raman data, using 
closure normalization, is given in Figure  19.  As in the previous example, the normalization step 
produces a much more linear dependence on concentration than exhibited by the raw band 
strength data.  
 

Figure 19:  Predicted versus known concentrations of mixtures of ascorbic acid and niacin obtained from 
second derivative Raman peak height data by using closure normalization.  
 
 For the diffuse reflectance comparison, we first collected spectra of mixtures of ascorbic 
acid and niacin over the full concentration range, ratioed against a white Spectralon™ target.  
We next converted each of these to the Kubelka-Munk format and calculated the second 
derivative spectrum. Using this set of data, we tried two different approaches to data reduction.   
 

For the first approach, we simply performed a full spectrum PLS calibration.  The results 
are given in Figure 20. 
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Figure 20:  PLS calibration for ascorbic acid, mixed with niacin, based on second derivative, Kubelka-
Munk, diffuse reflectance data. 
 
 Our second approach to calibration, was similar to that used for the Raman data.  We 
first, plotted the second derivative peak heights at the frequencies corresponding to the 
strongest bands of both substances.  The result is given in Figure 21.  As in the case of the 
dilution of niacin by KCl, this data shows both marked non-linearity and substantial scatter.  
 

 
Figure 21: Second derivative Kubelka-Munk peak heights for mixtures of ascorbic acid and niacin.  
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 We next normalized this data by using the same approach as we applied above for 
Raman analysis.  However, in this case we placed the closure requirement on the Kubelka- 
Munk peak values rather on the concentration.  We have established theoretically that, at least 
for a two-component system, once the K-M peak values are properly normalized, the 
concentration values will also be normalized.  This is an interesting result in view of the non-
linear relationship between the Kubelka-Munk function and concentration.  The result is shown 
in Figure 21 along with a fit to the theoretical relationship between the Kubelka-Munk function 
and concentration.   
 

 
Figure 22:  Second derivative Kubelka-Munk peak heights corresponding to the data of Figure 21 after 
closure normalization.  
 
 This result is interesting in that the closure normalization has resulted in a set of values 
which not only fit the expected functionality – with the exception of one pair of outliers – but also 
exhibit much less scatter than the raw peak height data.  However, this result is not at all 
surprising since we know that much of the scatter in the data is due to packing density 
variations, and these should be common to both components.   
 
 It is enlightening to compare Figure 22 with the PLS calibration illustrated in Figure 20.  
Clearly, fitting the normalized data to a theoretical non-linear curve results in a far better 
calibration than the linear regression approach. In fact, the points that were furthest from the 
regression line (points 16, 17, 20, 26, 13, and 11) fall very close to the non-linear fit, while the 
pair of outliers at 20% niacin (point # 5 of Figure 20) is a good fit to the regression line.  
 
CONCLUSIONS: 
 
 I have already stated a number of conclusions as they related to the individual 
experiments reported above. The more important of these are summarized in outline form in 
Table I, below.  
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TABLE I:  Summary of specific conclusions related to particular sample characteristics.  
 
 Generalizing, we can state that near-IR spectroscopy has the advantage of mature 
hardware, lower cost of ownership, and insensitivity to various factors such as fluorescence, 
pigmentation, and background illumination that can degrade Raman performance.  In addition, 
near-IR transmission has the advantage of adherence to Beer’s law with the result that 
multiplitive errors can be ignored. Compared to near-IR diffuse reflectance, Raman 
spectroscopy has the advantage of greater specificity and, when compared to near-IR diffuse 
reflectance, generally greater accuracy for both quantitative and qualitative analysis.   
 
 Near-IR diffuse reflectance and Raman spectroscopy have some characteristics in 
common.    In particular, since neither obeys Beer’s law, they both require some sort of 
normalization to separate multiplitive errors from true concentration dependence.  And both can 
exhibit highly non-linear concentration dependence for heterogeneous mixtures.  In addition, 
diffuse reflectance spectra were found to be highly dependent on packing density of the 
samples.   
 
 In order to normalize the analysis of mixtures of active substances, I have imposed the 
requirement that the sum of the measured concentrations be equal to one.  In the case of 
diffuse reflectance, this requirement can be met by normalizing the sum of the calculated peak 
values of the Kubelka-Munk function for each substance to one.  For the cases studied, this 
approach has been found to provide the following benefits: It obviated the need for an absolute 
intensity reference. It corrected non-linearity caused by dissimilar scattering characteristics.  It 
substantially reduced the data scatter caused by density variations.  And it provided a good fit to 
the theoretically predicted concentration dependence.  
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